Reactions of 4-Arylmethylenepyrrolidine-2,3-diones. Synthesis of Pyrrolo[3,4-b]-pyridines and -quinolines ${ }^{1}$

By R. Madhav, Mellon Institute, Carnegie-Mellon University, Pittsburgh, Pennsylvania 15213, U.S.A.

4-Arylmethylenepyrrolidine-2,3-diones (1) condense with ethyl β-aminocrotonoate or with 4-aminopent-3-en2 -one to give adducts which can be dehydrogenated to afford pyrrolo[3,4-b]pyridines. N-Phenacylpyridinium salts also react with the pyrrolidinediones (1), to form 2,4-diarylpyrrolo[3,4-b]pyridines. In addition, o-nitro-benzylidenepyrrolidine-2,3-diones undergo reductive cyclization to give pyrrolo [3,4-b]quinolines.

The ready conversion of pyrrolidine-2,3-diones (2) into their 4 -arylmethylene derivatives (1) has been reported. ${ }^{2}$ These derivatives can undergo nucleophilic addition to the $\alpha \beta$-unsaturated ketonic function, giving bicyclic and polycyclic systems incorporating a pyrroline ring fused across the 3 - and 4 -positions. For example, pyrrolo $[3,4-d]$ pyrimidines have been obtained by the reaction of the benzylidene compounds with guanidine. ${ }^{3}$ We have been investigating the versatility of these compounds as intermediates for the preparation of heterocycles, ${ }^{1}$ and now report a convenient synthesis of

pyrrolo $[3,4-b]$-pyridines and -quinolines. The only reported route to pyrrolo $[3,4-b]$ pyridines starts from quinolinic acids. ${ }^{4}$

The arylmethylene derivatives (1) were obtained by the acid-catalysed aldol condensation of aromatic
${ }^{1}$ Preliminary communication, R. Madhav, Synthesis, 1973, 609.

2 P. L. Southwick and E. F. Barnas, J. Org. Chem., 1962, 27, 98; P. L. Southwick, N. Latif, B. M. Fitzgerald, and N. M. Zaczek, ibid., 1966, 31, 1; P. L. Southwick and R. Madhav, unpublished data.
${ }^{3}$ P. L. Southwick and G. H. Hofmann, J. Org. Chem., 1963, 28, 1332.
aldehydes with 1 -substituted pyrrolidine-2,3-diones, which can be prepared by hydrolysis and decarboxylation of the enol forms of 1 -substituted 4 -alkoxycarbonyl-pyrrolidine-2,3-diones. ${ }^{5}$ Two general methods were employed for the construction of pyrrolo $[3,4-b]$ pyridines.

(8)

(9) $a ; R=\left[\mathrm{CH}_{2}\right]_{5} \mathrm{CH}$

$$
b ; R=\mathrm{PhCH}_{2}
$$

$$
\mathrm{c} ; \mathrm{R}=\mathrm{MeO}_{2} \mathrm{C} \cdot\left[\mathrm{CH}_{2}\right]_{2}
$$

The arylmethylene derivatives ($1 \mathrm{a}-\mathrm{e}$) were condensed with ethyl β-aminocrotonate (2) or [for (1a)] with 4-aminopent-3-en-2-one (3) (derived from acetylacetone) to afford the non-aromatic adducts (4a-e) and (5a). The adducts were not purified but could be treated with bromine to give the pyrrolo $[3,4-b]$ pyridines ($6 \mathrm{a}-\mathrm{e}$) and (7a).
The other route made use of N-phenacylpyridinium bromide (8) as the activated methylene component. Its reaction with the arylmethylene derivatives ($1 \mathrm{a}, \mathrm{e}$, and f) in the presence of ammonium acetate occurred smoothly to give the pyrrolo $[3,4-b]$ pyridines $(9 a-c)$. The carbonyl group of (9a) could be reduced with lithium aluminium hydride.

The o-nitrobenzylidene derivatives (1 g and h) were found to be useful intermediates for the preparation of pyrrolo $[3,4-b]$ quinolines (10). Since the recognition that the antileukaemic alkaloid camptothecin contains a pyrrolo[3,4-b]quinoline unit, efforts have been directed towards the synthesis of this system. We have previously reported the synthesis of pyrrolo[3,4-b]quinolines from pyrrolidine-2,3-diones and N-aryl enamines derived from the enol forms of 4 -ethoxy-carbonylpyrrolidine- 2,3 -diones. ${ }^{6}$ When the o-nitrobenzylidene derivatives ($\mathbf{l g}$ and h) were reduced with $\operatorname{tin}(\mathrm{II})$ chloride, the products underwent spontaneous

[^0]ring closure to yield the pyrrolo[3,4-b]quinolines (10a and b). Sodium dithionite also brought about the reductive cyclization but in lower yields.

The n.m.r. signal of the olefinic protons of the o-nitrobenzylidene derivatives (lg and h) appear at low field

($=2 \cdot 5$), indicating the E-configuration for the double bond. ${ }^{7}$ Thus a change in configuration as well as reduction of the nitro-group must be involved in the ring closure reaction. The acidic or basic conditions associated with the reduction step may promote $E \leftrightharpoons Z$ equilibration of the conjugated system.

EXPERIMENTAL

M.p.s were taken with a Meltemp apparatus and are corrected. I.r. spectra were run for Nujol mulls with a Perkin-Elmer Infracord instrument. ${ }^{1} \mathrm{H}$ N.m.r. spectra were recorded for solutions in CDCl_{3} or $\mathrm{CDCl}_{3}-\mathrm{CF}_{3} \cdot \mathrm{CO}_{2} \mathrm{H}$ (4:1) ($\mathrm{Me}_{4} \mathrm{Si}$ as internal standard) with a Hitachi-PerkinElmer R-20 spectrometer.

1-Substituted 4-Arylmethylenepyrrolidine-2,3-diones (1).The compounds were prepared by Southwick and Barnas' method. ${ }^{2}$

1-Cyclohexyl-4-(o-nitrobenzylidene) pyrrolidine-2,3-dione

 (lg), obtained from l-cyclohexyl-4-ethoxycarbonylpyr-rolidine-2,3-dione ($3.1 \mathrm{~g}, 0.0125 \mathrm{~mol}$) and o-nitrobenzaldehyde ($2.8 \mathrm{~g}, 0.019 \mathrm{~mol}$) (yield $2.0 \mathrm{~g}, 64.4 \%$), had m.p. $162-164^{\circ}$; $\lambda_{\text {max. }} 5 \cdot 78,5.95$, and $6.64 \mu \mathrm{~m}$; $\tau\left(\mathrm{CDCl}_{3}\right)$ $1.45-2.25(4 \mathrm{H}, \mathrm{m}$, aromatic), $1.7(1 \mathrm{H}, \mathrm{s},=\mathrm{CH}), 5.5(2 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{2}\right), 5 \cdot 4-5 \cdot 8(1 \mathrm{H}, \mathrm{m}$, methine $)$, and $7.8-8.8\left(\mathrm{~m},\left[\mathrm{CH}_{2}\right]_{5}\right)$ (Found: C, $65.2 ; \mathrm{H}, 5.85 ; \mathrm{N}, 8.65 . \quad \mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{4}$ requires C, $64.95 ; \mathrm{H}, 5.75 ; \mathrm{N}, 8.9 \%$).4-(o-Nitrobenzylidene)-1-phenethylpyrrolidine-2,3-dione (1h), obtained from 4-ethoxycarbonyl-1-phenethylpyr-rolidine-2,3-dione $(3.4 \mathrm{~g}, 0.0125 \mathrm{~mol})$ and o-nitrobenzaldehyde ($2.8 \mathrm{~g}, 0.019 \mathrm{~mol}$) (yield $2.1 \mathrm{~g}, 50.0 \%$), had m.p. $188-189^{\circ}$; $\lambda_{\text {max. }} 5 \cdot 77,5.85$, and $6.65 \mu \mathrm{~m}$; $\tau\left(\mathrm{CDCl}_{3}-\right.$ $\left.\mathrm{CF}_{3} \cdot \mathrm{CO}_{2} \mathrm{H}\right) \quad 1.50-2.25(4 \mathrm{H}, \mathrm{m}$, aromatic), $1.73(1 \mathrm{H}, \mathrm{s}$, $=\mathrm{CH}), 2.61(5 \mathrm{H}, \mathrm{s}, \mathrm{Ph}), 5.72\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right)$, and 6.05 and $6.83\left(4 \mathrm{H}, \mathrm{t}, 2 \times \mathrm{CH}_{2}\right)$ (Found: C, $67.9 ; \mathrm{H}, 4.7$; N, 8.1 . $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{4}$ requires C, $67 \cdot 85 ; \mathrm{H}, 4 \cdot 8 ; \mathrm{N}, 8 \cdot 35 \%$).

6-Substituted Ethyl 4-Aryl-6,7-dihydro-2-methyl-7-oxo-5H-pyrrolo[3,4-b]pyridine-3-carboxylates (6).-The 1-substituted 4-arylmethylenepyrrolidine-2,3-dione (1) (0.01 mol), ethyl acetoacetate (0.01 mol), and conc. aqueous ammonia (1 ml) were refluxed in absolute ethanol (10 ml) for 3 h . The mixture was poured into water (250 ml) and the solid which separated was filtered off, washed, and dried. The crude solid (3.0 g) was treated with anhydrous sodium acetate

[^1] Chem., 1969, 7, 89.
$(1.5 \mathrm{~g})$ and bromine ($0.8 \mathrm{~g}, 0.2 \mathrm{~mol}$) in acetic acid (25 ml) under reflux for 2 h . The mixture was diluted with water $(300 \mathrm{ml})$ and the product was filtered off, washed with water, and crystallized from ethanol-water.

The 6-cyclohexyl-4-phenyl derivative (6a) (yield 63.4\%) had m.p. 203-204 ; $\lambda_{\text {max. }} 5 \cdot 8$ and $5 \cdot 95 \mu \mathrm{~m}$; $\tau\left(\mathrm{CDCl}_{3}\right) 3 \cdot 0$ $(5 \mathrm{H}, \mathrm{s}, \mathrm{Ph}), 5.95\left(1 \mathrm{H}, \mathrm{m}\right.$, methine), $6.05\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 6.2$ $\left(2 \mathrm{H}, \mathrm{q}, \mathrm{CH}_{2} \cdot \mathrm{CH}_{3}\right), 7.4\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 8.0-8.9(10 \mathrm{H}, \mathrm{m}$, $\left[\mathrm{CH}_{2}\right]_{5}$), and $9.07\left(3 \mathrm{H}, \mathrm{t}, \mathrm{CH}_{2} \cdot \mathrm{CH}_{3}\right)$ (Found: C, $72.8 ; \mathrm{H}$, $6.8 ; \mathrm{N}, 7.15 . \quad \mathrm{C}_{23} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{3}$ requires $\mathrm{C}, 73.0 ; \mathrm{H}, 6.95 ; \mathrm{N}$, $7 \cdot 4 \%$). The 6 -cyclohexyl-4-p-methoxyphenyl derivative (6 b) (yield 69.2%) had m.p. $183-185^{\circ}$; $\lambda_{\text {max. }} 5.87$ and $6.0 \mu \mathrm{~m}$; : $\left(\mathrm{CDCl}_{3}\right) 2.85\left(4 \mathrm{H}, \mathrm{q}\right.$, aromatic), $5.9\left(2 \mathrm{H}, \mathrm{q}, \mathrm{CH}_{2} \cdot \mathrm{CH}_{3}\right)$, $6.0(1 \mathrm{H}, \mathrm{m}$, methine $), 6 \cdot 1\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 6 \cdot 18\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right)$, $7.5\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 7.95-8.65\left(10 \mathrm{H}, \mathrm{m},\left[\mathrm{CH}_{2}\right]_{5}\right)$, and $8.9(3 \mathrm{H}$, $\mathrm{t}, \mathrm{CH}_{2} \cdot \mathrm{CH}_{3}$) (Found: C, $70 \cdot 6$; H, $7 \cdot 2$; N, $6 \cdot 8 . \quad \mathrm{C}_{24} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{4}$ requires $\mathrm{C}, 70.55 ; \mathrm{H}, 6.9 ; \mathrm{N}, 6.9 \%$). The 6 -cyclohexyl-$4-\mathrm{m}$-nitrophenyl derivative (6c) (yield $74 \cdot 3 \%$) had m.p. $231-232^{\circ}$; $\lambda_{\text {max. }} 5.85,5.95$, and $6.63\left(\mathrm{NO}_{2}\right) \mu \mathrm{m}$; $=\left(\mathrm{CDCl}_{3}\right)$ $2.45-3.22(4 \mathrm{H}, \mathrm{m}$, aromatic), $6.0(1 \mathrm{H}, \mathrm{m}$, methine), 6.3 $\left(2 \mathrm{H}, \mathrm{q}, \mathrm{CH}_{2} \cdot \mathrm{CH}_{3}\right), 6.65\left(4 \mathrm{H}, \mathrm{d}, 2 \times \mathrm{CH}_{2}\right), 7 \cdot 65(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{3}\right), 8 \cdot 1-8 \cdot 8\left(10 \mathrm{H}, \mathrm{m},\left[\mathrm{CH}_{2}\right]_{5}\right)$, and $8.95\left(3 \mathrm{H}, \mathrm{t}, \mathrm{CH}_{2} \cdot \mathrm{CH}_{3}\right)$ (Found: C, 65.5; H, 6.25; N, 9.65. $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{5}$ requires C, $65.25 ; \mathrm{H}, 5.95 ; \mathrm{N}, 9.9 \%$). The 6 -t-butyl-4-phenyl derivative (6 d) (yield 78.2%) had m.p. 218-220 ; $\lambda_{\text {max. }}$ 5.87 and $5.95 \mu \mathrm{~m} ; ~ \div\left(\mathrm{CDCl}_{3}\right) 2.45\left(5 \mathrm{H}, \mathrm{s}, \mathrm{Pl}_{2}\right), 5.85(2 \mathrm{H}, \mathrm{q}$, $\left.\mathrm{CH}_{2} \cdot \mathrm{CH}_{3}\right), 6 \cdot 15\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 7 \cdot 4\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 8.5(9 \mathrm{H}, \mathrm{m}$, Bu^{t}), and $8.85\left(3 \mathrm{H}, \mathrm{t}, \mathrm{CH}_{2} \cdot \mathrm{CH}_{3}\right)$ (Found: $\mathrm{C}, 71.75 ; \mathrm{H}$, $7.05 ; \mathrm{N}, 7.85 . \quad \mathrm{C}_{21} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{3}$ requires $\mathrm{C}, 71.55 ; \mathrm{H}, 6.85$; $\mathrm{N}, 7.95 \%$). The 6 -benzyl-4-phenyl derivative (6e) (yield 93.4%) had m.p. $174-175^{\circ} ; \lambda_{\text {max. }} 5.88$ and $6.0 \mu \mathrm{~m}$; $\because\left(\mathrm{CDCl}_{3}\right) 3.2(10 \mathrm{H}, \mathrm{s}$, aromatic), 5.7 and $6.6(4 \mathrm{H}$, two s, $\left.2 \times \mathrm{CH}_{2}\right), 6.25\left(2 \mathrm{H}, \mathrm{q}, \mathrm{CH}_{2} \cdot \mathrm{CH}_{3}\right), 7.7\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$, and $9 \cdot 0\left(3 \mathrm{H}, \mathrm{t}, \mathrm{CH}_{2} \cdot \mathrm{CH}_{3}\right)$ (Found: C, $74 \cdot 4$; H, $5 \cdot 95$; N, $7 \cdot 1$. $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{3}$ requires C, $74 \cdot 6 ; \mathrm{H}, 5 \cdot 75 ; \mathrm{N}, 7 \cdot 1 \%$).

3-Acetyl-6-cyclohexyl-5,6-dihydro-2-methyl-4-phenylpyrrolo-[3,4-b]pyridin-7-one (7a), obtained by the same general procedure as described for (6a) (yield $57 \cdot 3 \%$), had m.p. $228-230^{\circ}$; $\lambda_{\text {max. }} 5.92$ and $5.95 \mu \mathrm{~m}$; $\tau\left(\mathrm{CDCl}_{3}\right) 2.7(5 \mathrm{H}, \mathrm{s}$, $\mathrm{Ph}), 6.0\left(1 \mathrm{H}, \mathrm{m}\right.$, methine), $6.3\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 7.5(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{3}\right), 7.92\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$, and $8.0-8.85\left(10 \mathrm{H}, \mathrm{m},\left[\mathrm{CH}_{2}\right]_{5}\right)$ (Found: C, $76 \cdot 0 ; \mathrm{H}, 7 \cdot 2 ; \mathrm{N}, 7.85 . \quad \mathrm{C}_{22} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires C, $75.85 ; \mathrm{H}, 6.95 ; \mathrm{N}, 8.05 \%$).

6-Substituted 5,6-Dihydro-2,4-diphenylpyrrolo [3,4-b]-pyridin-7-ones (9).—The 1-substituted 4-benzylidenepyr-rolidine-2,3-dione (1) (0.005 mol) N-phenacylpyridinium bromide (8) $(0.005 \mathrm{~mol})$, and ammonium acetate (1.0 g) were refluxed in 20:1 ethanol-acetic acid (21 ml) for 3 h . The mixture was poured into water (250 ml) and extracted with ethyl acetate $(3 \times 50 \mathrm{ml})$. The extract was washed with water, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated. The crude product was crystallized from ethyl acetate-petroleum (b.p. $30-60^{\circ}$) or ethanol-water.

The 6-cyclohexyl derivative (9a) (yield $61 \cdot 2 \%$) had m.p. $235-236^{\circ}$; $\lambda_{\text {max. }} 5 \cdot 96 \mu \mathrm{~m}$; $\tau\left(\mathrm{CDCl}_{3}\right) 1.55(1 \mathrm{H}, \mathrm{m}$, aromatic), $2.0-2.35\left(10 \mathrm{H}, \mathrm{m}\right.$, aromatic), $5.35\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 5 \cdot 5(1 \mathrm{H}$, m , methine), and $7.8-8.85\left(10 \mathrm{H}, \mathrm{m},\left[\mathrm{CH}_{2}\right]_{5}\right)$ (Found: C , $81 \cdot 6 ; \mathrm{H}, 6 \cdot 3 ; \mathrm{N}, 7 \cdot 45 . \quad \mathrm{C}_{25} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}$ requires $\mathrm{C}, 81 \cdot 5 ; \mathrm{H}$, $6.55 ; \mathrm{N}, 7.6 \%$). The 6 -benzyl derivative (9 b) (yield 49.5%) had m.p. 182-183 ; $\lambda_{\text {max. }} 5.95 \mu \mathrm{~m}$; $\tau\left(\mathrm{CDCl}_{3}\right) 1.62(1 \mathrm{H}, \mathrm{m}$, aromatic), $2 \cdot 0-2 \cdot 35\left(15 \mathrm{H}, \mathrm{m}\right.$, aromatic), $5 \cdot 15\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right)$, and $5.8\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right)$ (Found: C, $79 \cdot 15 ; \mathrm{H}, 5 \cdot 6 ; \mathrm{N}, 7 \cdot 1$. $\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{2}, \mathrm{H}_{2} \mathrm{O}$ requires $\left.\mathrm{C}, 79 \cdot 4 ; \mathrm{H}, 5 \cdot 65 ; \mathrm{N}, 6.9 \%\right)$. The 6-(2-methoxycarbonylethyl) derivative (9c) (yield 41.1\%) had m.p. $140-141^{\circ} ; \lambda_{\text {max. }} 5.8$ and $5.95 \mu \mathrm{~m}$; $\div\left(\mathrm{CDCl}_{3}\right) 1 \cdot 6$
($1 \mathrm{H}, \mathrm{m}$, aromatic), $2.0-2.5(10 \mathrm{H}, \mathrm{m}$, aromatic), $5.65(2 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{CH}_{2}\right), 6.08\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 6 \cdot 2\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$, and $7.15(2 \mathrm{H}$, $\mathrm{m}, \mathrm{CH}_{2}$) (Found: $\mathrm{C}, 74 \cdot 0 ; \mathrm{H}, 5 \cdot 3 ; \mathrm{N}, 7 \cdot 7 . \quad \mathrm{C}_{23} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{3}$ requires $\mathrm{C}, 74,15 ; \mathrm{H}, 5 \cdot 4 ; \mathrm{N}, 7.5 \%$).

6-Cyclohexyl-5,6-dihydro-2,4-diphenylpyrrolo[3,4-b]pyrid$i n-7$-one.-A suspension of (9 a) $(0.9 \mathrm{~g})$ was reduced with lithium aluminum hydride in dry tetrahydrofuran (100 ml) under nitrogen for 20 h . The product $(0.3 \mathrm{~g})$, a viscous oil, was characterized as its picrate, m.p. 189-190 (from ethanol) (Found: C, 63.55; H, 5.0; N, 11.7. $\mathrm{C}_{31} \mathrm{H}_{29} \mathrm{~N}_{5} \mathrm{O}_{7}$ requires $\mathrm{C}, 63 \cdot 8 ; \mathrm{H}, 5 \cdot 0 ; \mathrm{N}, 12.0 \%$).

1-Substituted 1,2-Dihydropyrrolo[3,4-b]quinolin-3-ones (10).-(a) By reduction with tin(II) chloride. To tin(II) chloride dihydrate (1.5 g) dissolved in conc. hydrochloric acid (15 ml) was added compound (1 g) or (1 h) $(0.5 \mathrm{~g})$. The solution was stirred at ambient temperature for $24-40 \mathrm{~h}$, then cooled to 0° and slowly neutralized with aqueous ammonia. The precipitate was filtered off, dried, mixed with sand, and extracted with chloroform (Soxhlet) for 2 days. The extract was evaporated and the residue was crystallized from ethanol to give a white crystalline solid.

The 1-cyclohexyl derivative (10a) (yield $0.2 \mathrm{~g}, 44 \cdot 2 \%$) had m.p. $311-313^{\circ} ; \dot{\lambda}_{\max } 6 \cdot 0 \mu \mathrm{~m} ; \tau\left(\mathrm{CDCl}_{3}-\mathrm{CF}_{3} \cdot \mathrm{CO}_{2} \mathrm{H}\right) 1 \cdot 1-$ $2 \cdot 1\left(5 \mathrm{H}, \mathrm{m}\right.$, aromatic), $5 \cdot 0\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 5 \cdot 4-5 \cdot 8(1 \mathrm{H}, \mathrm{m}$, methine), and $7.8-8.8\left(10 \mathrm{H}, \mathrm{m},\left[\mathrm{CH}_{2}\right]_{5}\right)$ (Found: $\mathrm{C}, 72 \cdot 15$; $\mathrm{H}, 6.8 ; \mathrm{N}, 9.85 . \quad \mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}, \mathrm{H}_{2} \mathrm{O}$ requires $\mathrm{C}, 72.5 ; \mathrm{H}, 6.5$; $\mathrm{N}, 9.85 \%$). The l-phenethyl derivative (10b) (yield 51.4%) had m.p. $224-225^{\circ}$; $\lambda_{\text {max. }} 5.95 \mu \mathrm{~m} ; \tau\left(\mathrm{CDCl}_{3}-\mathrm{CF}_{3} \cdot \mathrm{CO}_{2} \mathrm{H}\right)$ $0.65-1.9(5 \mathrm{H}, \mathrm{m}$, aromatic), $2.1(5 \mathrm{H}, \mathrm{s}, \mathrm{Ph}), 5 \cdot 1(2 \mathrm{H}, \mathrm{s}$, CH_{2}), and 5.75 and $6.8\left(4 \mathrm{H}, \mathrm{t}, 2 \times \mathrm{CH}_{2}\right.$) (Found: $\mathrm{C}, 79.0$; $\mathrm{H}, 5 \cdot 65 ; \mathrm{N}, 9 \cdot 7 . \quad \mathrm{C}_{19} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}$ requires $\mathrm{C}, 79 \cdot 15 ; \mathrm{H}, 5 \cdot 6$; N, $9,7 \%$).
(b) By reduction with sodium dithionite. Compound (lg) $(0.2 \mathrm{~g})$ in hot ethanol $(20 \mathrm{ml})$ was treated with aqueous sodium dithionite (2 g in 4 ml) for 1 h . The solution was diluted with water and extracted with ethyl acetate, and the extract was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. Crystallization of the residue from ethanol gave compound (10a) ($0.03 \mathrm{~g}, 16.6 \%$), identified by mixed m.p.

I thank Dr. P. L. Southwick for his interest in this work.

[^0]: 4 Z. J. Vejdelek, M. Protiva, Cesk. Farm., 1964, 13, 76 (Chem. Abs., 1964, 10, 10,662) ; W. L. F. Armarego, B. A. Milloy, and S. C. Sharma, J.C.S. Perkin I, 1972, 2485.
 ${ }_{5}$ P. L. Southwick and R. T. Crouch, J. Amer. Chem. Soc., 1953, 75, 3413.
 ${ }_{6}$ R. Madhav, R. F. Dufresne, and P. L. Southwick, J. Heterocyclic Chem., 1973, 10, 225; R. Madhav and P. L. Southwick, ibid., 1972, 9, 443.

[^1]: ${ }^{7}$ D. N. Kevill, E. D. Weiler, and N. H. Cromwell, J. Org. Chem., 1964, 29, 1276; J. L. Imbach, A. E. Pohland, E. DWeiler, and N. H. Cromwell, Tetrahedron, 1967, 23, 3931; IAgranet, R. M. J. Lowenstein, and E. D. Bergmann, Israel J.

